Shielded spectrum model (beta)
Model API name: shielded-spectrum
Shielded spectrum model (beta)
Version: v1
Model example
import math
import matplotlib.pyplot as plt
from nom_client.nom_client import NoMClient
plt.rcParams['figure.figsize'] = [15, 10]
plt.rc('font', size=18)
m_to_cm = 1e-4
to_omni = 4 * math.pi
mis_dur_in_days = 1
mis_dur_in_s = mis_dur_in_days * 86400
shieldThickness = 1
species_name_to_plot = "H"
atomic_number_to_plot = 1
def plot(x_data, y_data, plot_types, line_types, xlabel, ylabel, labels, title):
for data_index in range(len(x_data)):
if plot_types[data_index] == 'loglog':
plt.loglog(x_data[data_index], y_data[data_index], linestyle=line_types[data_index], linewidth=2.0,
markersize=12.0,
label=labels[data_index])
elif plot_types[data_index] == 'semilogy':
plt.semilogy(x_data[data_index], y_data[data_index], linestyle=line_types[data_index], linewidth=2.0,
markersize=12.0,
label=labels[data_index])
elif plot_types[data_index] == 'semilogx':
plt.semilogx(x_data[data_index], y_data[data_index], linestyle=line_types[data_index], linewidth=2.0,
markersize=12.0,
label=labels[data_index])
else:
plt.plot(x_data[data_index], y_data[data_index], linestyle=line_types[data_index], linewidth=2.0,
markersize=12.0,
label=labels[data_index])
plt.title(title, fontsize=18)
plt.grid(True)
plt.legend(bbox_to_anchor=(0.95, 0.95), loc=1, borderaxespad=0.,
fancybox=True, fontsize=18, shadow=True)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.show()
nom_client = NoMClient(project_name="Shielded spectrum example", default_server_id="local_server")
sapre_model_gto = nom_client.get_model('trajectory')
sapre_model_gto.set_params(orbitSpecificationCode="NEI", missionDuration=mis_dur_in_days)
sapre_gto_result = nom_client.run_model(sapre_model_gto)
print(sapre_gto_result)
lowestIonSpecies = 1
highestIonSpecies = 92
iso_15390_model = nom_client.get_model('iso_15390')
iso_15390_model.set_params(lowestIonSpecies=lowestIonSpecies, highestIonSpecies=highestIonSpecies)
iso_15390_model.set_external_input(external_input_name="trajectory", external_input=sapre_gto_result)
iso_15390_results = nom_client.run_model(iso_15390_model)
print(iso_15390_results)
gcr_spectrum = iso_15390_results.get_model_result_by_name(result_name="particle_spectrum")
gcr_spectrum_energies = gcr_spectrum.get_variable_data(variable_name="energy").squeeze()
gcr_spectrum_diff_flux_m2_sr_s = gcr_spectrum.get_variable_data(variable_name="differential_flux",
species=species_name_to_plot).squeeze()
gcr_spectrum_int_flux_m2_sr_s = gcr_spectrum.get_variable_data(variable_name="integral_flux",
species=species_name_to_plot).squeeze()
gcr_spectrum_int_flux_cm2_s = gcr_spectrum_int_flux_m2_sr_s * m_to_cm * to_omni
gcr_spectrum_diff_flux_cm2_s = gcr_spectrum_diff_flux_m2_sr_s * m_to_cm * to_omni
sapphire_model = nom_client.get_model('sapphire-total-fluence')
sapphire_model.set_params(lowestIonSpecies=lowestIonSpecies, highestIonSpecies=highestIonSpecies)
sapphire_model.set_external_input(external_input_name="trajectory", external_input=sapre_gto_result)
sapphire_results = nom_client.run_model(sapphire_model)
print(sapphire_results)
sep_spectrum = sapphire_results.get_model_result_by_name(result_name="full_ion_spectrum")
sep_spectrum_energies = sep_spectrum.get_variable_data(variable_name="energy").squeeze()
sep_spectrum_diff_flux_cm2 = sep_spectrum.get_variable_data(variable_name="differential_fluence",
species=species_name_to_plot).squeeze()
sep_spectrum_int_flux_cm2 = sep_spectrum.get_variable_data(variable_name="integral_fluence",
species=species_name_to_plot).squeeze()
sep_spectrum_diff_flux_cm2_s = sep_spectrum_diff_flux_cm2 / mis_dur_in_s
sep_spectrum_int_flux_cm2_s = sep_spectrum_int_flux_cm2 / mis_dur_in_s
plot(x_data=[gcr_spectrum_energies, sep_spectrum_energies],
y_data=[gcr_spectrum_int_flux_cm2_s, sep_spectrum_int_flux_cm2_s],
plot_types=["loglog", "loglog"],
line_types=["solid", "solid"],
xlabel="Energy (MeV)",
ylabel="DIfferential flux (cm^-2 s^-1 MeV^-1)",
labels=["GCR", "SAPPHIRE total fluence"],
title="Unshielded GCR / SEP spectra")
ss_model = nom_client.get_model('shielded-spectrum')
ss_model.set_params(shieldThickness=shieldThickness)
ss_model.set_external_input(external_input_name="spectra", external_input=[sep_spectrum, gcr_spectrum])
ss_results = nom_client.run_model(ss_model)
print(ss_results)
shielded_spectrum = ss_results.get_model_result_by_name(result_name="shielded_spectrum")
calc_shielded_energy = shielded_spectrum.get_variable_data(variable_name="energy").squeeze()
calc_shielded_diff_flux_cm2 = shielded_spectrum.get_variable_data(variable_name="differential_fluence",
z=atomic_number_to_plot).squeeze()
calc_shielded_int_flux_cm2 = shielded_spectrum.get_variable_data(variable_name="integral_fluence",
z=atomic_number_to_plot).squeeze()
# Calculate the stopping powers
spectrum_energy_min = min(calc_shielded_energy)
spectrum_energy_max = max(calc_shielded_energy)
stopping_powers_model = nom_client.get_model('stopping-powers')
stopping_powers_model.set_params(energyLow=spectrum_energy_min, energyHigh=spectrum_energy_max, numberEnergies=66,
material="G4_Si", particle="all", data_source="c86")
stopping_powers_result = nom_client.run_model(stopping_powers_model)
stopping_powers = stopping_powers_result.get_model_result_by_name(result_name="stopping_powers")
stopping_powers_energy_vals = stopping_powers.get_variable_data(variable_name="energy", scenario="G4_Si_Fe56")
stopping_powers_S_vals = stopping_powers.get_variable_data(variable_name="stopping_power", scenario="G4_Si_Fe56")
stopping_powers_scenario = stopping_powers.get_variable_data(variable_name="scenario")
#
# plot(x_data=[stopping_powers_energy_vals.squeeze()],
# y_data=[stopping_powers_S_vals.squeeze()],
# plot_types=["loglog"],
# line_types=["solid"],
# xlabel="Energy (MeV)",
# ylabel="Stopping power (MeV cm g-1)",
# labels=["Stopping power", ],
# title=f"Stopping power ({species_name_to_plot})")
# Calculate the LET spectra
let_model = nom_client.get_model('let')
let_model.set_external_input(external_input_name="spectra", external_input=[shielded_spectrum])
let_model.set_external_input(external_input_name="stopping_power", external_input=stopping_powers_result)
let_results = nom_client.run_model(let_model)
#
calc_let_spectrum = let_results.get_model_result_by_name(result_name="let_spectrum")
calc_let = calc_let_spectrum.get_variable_data(variable_name="let").squeeze()
calc_diff_flux_m2_sr = calc_let_spectrum.get_variable_data(variable_name="differential_fluence").squeeze()
calc_int_flux_m2_sr = calc_let_spectrum.get_variable_data(variable_name="integral_fluence").squeeze()
# Run longupset as a comparison
longupset_model = nom_client.get_model('longupset')
longupset_model.set_external_input(external_input_name="trajectory", external_input=sapre_gto_result)
longupset_model.set_params(includeSEPSpectrum=1, includeTrappedSpectrum=0, includeGCRSpectrum=1,
shieldThickness=shieldThickness, shieldThicknessUnit=2)
longupset_model.set_external_input(external_input_name="solarParticleSpectrum",
external_input=sapphire_results)
longupset_model.set_external_input(external_input_name="gcrSpectrum",
external_input=iso_15390_results)
longupset_model.new_input_group(input_group_name="device", unique_group_name="mydevice1", params={
"deviceMaterial": 0,
"deviceName": "DEFAULT1"
})
longupset_result = nom_client.run_model(longupset_model)
print(longupset_result)
longupset_energy_spectrum = longupset_result.get_model_result_by_name(result_name="energy_spectrum_all_species")
longupset_shielded_energies = longupset_energy_spectrum.get_variable_data(variable_name="energy").squeeze()
longupset_shielded_differential_flux_m2_sr = longupset_energy_spectrum.get_variable_data(variable_name="differential_fluence",
species="H").squeeze()
longupset_shielded_integral_flux_m2_sr = longupset_energy_spectrum.get_variable_data(variable_name="integral_fluence",
species=species_name_to_plot).squeeze()
longupset_shielded_energies = longupset_shielded_energies.squeeze()
longupset_shielded_differential_flux_m2_sr = longupset_shielded_differential_flux_m2_sr.squeeze()
#
let_spectrum = longupset_result.get_model_result_by_name(result_name="let_spectrum")
let_let = let_spectrum.get_variable_data(variable_name="let").squeeze()
let_differential_flux_m2_sr = let_spectrum.get_variable_data(variable_name="differential_fluence").squeeze()
let_integral_flux_m2_sr = let_spectrum.get_variable_data(variable_name="integral_fluence").squeeze()
calc_shielded_diff_flux_cm2_sr_s = calc_shielded_diff_flux_cm2 / (mis_dur_in_s*to_omni)
calc_shielded_int_flux_cm2_sr_s = calc_shielded_int_flux_cm2 / (mis_dur_in_s*to_omni)
calc_diff_flux_cm2_sr_s = calc_diff_flux_m2_sr * m_to_cm / mis_dur_in_s
calc_int_flux_cm2_sr_s = calc_int_flux_m2_sr * m_to_cm / mis_dur_in_s
longupset_shielded_integral_flux_cm2_sr_s = longupset_shielded_integral_flux_m2_sr * m_to_cm / mis_dur_in_s
longupset_shielded_differential_flux_cm2_sr_s = longupset_shielded_differential_flux_m2_sr * m_to_cm / mis_dur_in_s
let_differential_flux_cm2_sr_s = let_differential_flux_m2_sr * m_to_cm / mis_dur_in_s
let_integral_flux_cm2_sr_s = let_integral_flux_m2_sr * m_to_cm / mis_dur_in_s
plot(x_data=[longupset_shielded_energies, calc_shielded_energy],
y_data=[longupset_shielded_integral_flux_cm2_sr_s, calc_shielded_int_flux_cm2_sr_s],
plot_types=['loglog', 'loglog'],
line_types=["solid", "solid"],
xlabel="Energy (MeV)",
ylabel="Differential flux (cm^-2 s^-1 MeV^-1)",
labels=["LONGUPSET / Shielded", "Shielded-spectrum model / Shielded"],
title="Shielded spectra")
Model references
No references